4.7 Article

Inhomogeneous microstructure and fatigue crack propagation of thick-section high strength steel joint welded using double-sided hybrid fiber laser-arc welding

期刊

OPTICS AND LASER TECHNOLOGY
卷 134, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.optlastec.2020.106668

关键词

Welding; Steel; Microstructure; Fatigue; Fracture

向作者/读者索取更多资源

The study investigated the inhomogeneous microstructure and fatigue crack propagation of a 30 mm thick-section high strength steel welded joint using double-sided hybrid fiber laser-arc welding. The results showed that the laser zone had smaller grain size, higher dislocation density, and higher fatigue crack propagation resistance compared to the arc zone.
The inhomogeneous microstructure and fatigue crack propagation of 30 mm thick-section high strength steel welded joint by double-sided hybrid fiber laser-arc welding were investigated in detail. The results indicated that the average effective grain size of the laser zone was only 1/2 of that of the arc zone, due to the faster cooling rate of the laser resource. The base metal consisted of massive polygonal ferrites and small granular carbides, while fine grained region, the coarse grained region and weld metal were all composed of martensite with a high dislocation density. Compared with the arc zone, the percentage of grain boundaries with high misorientation angle increased 24% for the laser zone, as the average grain size of the laser zone was smaller than that of the arc zone. The results also revealed that the fatigue crack propagation resistance of the welded joint was higher than that of the base metal. Meanwhile, a significant increase in the fatigue crack propagation resistance of the laser zone occurred, as compared with the arc zone, due to the refined grains and the high proportion of the grain boundaries with high misorientation angle (>15 degrees) in the laser zone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据