4.5 Article

Equilibrium and sensitivity analysis of a spatio-temporal host-vector epidemic model

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.nonrwa.2020.103194

关键词

Equilibrium analysis; Compartmental model; Global sensitivity analysis; Partial differential equations; Transient phase; Xylella fastidiosa

资金

  1. INRA-DGAL Project [21000679]
  2. HORIZON 2020 XF-ACTORS Project [SFS-09-2016]

向作者/读者索取更多资源

This article introduces a spatially-explicit compartmental model adapted to pathosystems with fixed hosts and mobile vectors for disease dissemination. The behavior of the model is analyzed through theoretical and numerical studies, and the implications for disease surveillance and control over a medium-to-long temporal horizon are discussed.
Insect-borne diseases are diseases carried by insects affecting humans, animals or plants. They have the potential to generate massive outbreaks such as the Zika epidemic in 2015-2016 mostly distributed in the Americas, the Pacific and Southeast Asia, and the multi-foci outbreak caused by the bacterium Xylella fastidiosa in Europe in the 2010s. In this article, we propose and analyze the behavior of a spatially-explicit compartmental model adapted to pathosystems with fixed hosts and mobile vectors disseminating the disease. The behavior of this model based on a system of partial differential equations is complementarily characterized via a theoretical study of its equilibrium states and a numerical study of its transient phase using global sensitivity analysis. The results are discussed in terms of implications concerning the surveillance and control of the disease over a medium-to-long temporal horizon. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据