4.6 Article

A fuzzy universum least squares twin support vector machine (FULSTSVM)

期刊

NEURAL COMPUTING & APPLICATIONS
卷 34, 期 14, 页码 11411-11422

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00521-021-05721-4

关键词

Universum; Fuzzy membership; Least squares twin support vector machine \; Outliers; Alzheimer's disease

资金

  1. Science and Engineering Research Board (SERB), INDIA [SB/S2/RJN-001/2016, ECR/2017/000053]
  2. Council of Scientific & Industrial Research (CSIR), New Delhi, INDIA [22(0751)/17/EMR-II]
  3. Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health) [U01 AG024904]
  4. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  5. National Institute on Aging
  6. National Institute of Biomedical Imaging and Bioengineering
  7. AbbVie
  8. Alzheimer's Association
  9. Alzheimer's Drug Discovery Foundation
  10. Araclon Biotech
  11. BioClinica, Inc.
  12. Biogen
  13. Bristol-Myers Squibb Company
  14. CereSpir, Inc.
  15. Cogstate
  16. Eisai Inc.
  17. Elan Pharmaceuticals, Inc.
  18. Eli Lilly and Company
  19. EuroImmun
  20. F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.
  21. Fujirebio
  22. GE Healthcare
  23. IXICO Ltd.
  24. Janssen Alzheimer Immunotherapy Research & Development, LLC.
  25. Johnson & Johnson Pharmaceutical Research & Development LLC.
  26. Lumosity
  27. Lundbeck
  28. Merck Co., Inc.
  29. Meso Scale Diagnostics, LLC.
  30. NeuroRx Research
  31. Neurotrack Technologies
  32. Novartis Pharmaceuticals Corporation
  33. Pfizer Inc.
  34. Piramal Imaging
  35. Servier
  36. Takeda Pharmaceutical Company
  37. Transition Therapeutics
  38. Canadian Institutes of Health Research
  39. Indian Institute of Technology Indore

向作者/读者索取更多资源

Universum based twin support vector machines use prior information about data distribution, leading to better generalization performance. However, in practice, data points may have varying importance, requiring the use of fuzzy membership functions. The proposed fuzzy universum least squares twin support vector machine (FULSTSVM) addresses this issue by providing weights based on membership values for both data samples and universum data, resulting in improved performance compared to existing algorithms.
Universum based twin support vector machines give prior information about the distribution of data to the classifier. This leads to better generalization performance of the model, due to the universum. However, in many applications the data points are not equally useful for the classification task. This leads to the use of fuzzy membership functions for the datasets. Similarly, in universum based algorithms, all the universum data points are not equally important for the classifier. To solve these problems, a novel fuzzy universum least squares twin support vector machine (FULSTSVM) is proposed in this work. In FULSTSVM, the membership values are used to provide weights for the data samples of the classes, as well as to the universum data. Further, the optimization problem of proposed FULSTSVM is obtained by solving a system of linear equations. This leads to an efficient fuzzy based algorithm. Numerical experiments are performed on various benchmark datasets, with discussions on generalization performance, and computational cost of the algorithms. The proposed FULSTSVM outperformed the existing algorithms on most datasets. A comparison is presented for the performance of the proposed and other baseline algorithms using statistical significance tests. To show the applicability of FULSTSVM, applications are also presented, such as detection of Alzheimer's disease, and breast cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据