4.7 Article

Application of the transitional Markov chain Monte Carlo algorithm to probabilistic site characterization

期刊

ENGINEERING GEOLOGY
卷 203, 期 -, 页码 151-167

出版社

ELSEVIER
DOI: 10.1016/j.enggeo.2015.10.015

关键词

Site investigation; Spatial variability; Statistical uncertainty; Markov chain Monte Carlo; Bayesian methods

向作者/读者索取更多资源

This paper applies the transitional Markov chain Monte Carlo (TMCMC) algorithm to probabilistic site characterization problems. The purpose is to characterize the statistical uncertainties in the spatial variability parameters based on the cone penetration test (CPT) dataset. The spatial variability parameters of interest include the trend function, standard deviation and scale of fluctuation for the spatial variability, and so on. In contrast to the Metropolis-Hastings (MH) algorithm, the TMCMC algorithm is a tune-free algorithm: it does not require the specification of the proposal probability density function (PDF), hence there is no need to tune the proposal PDF. Also, there is no burn-in period to worry about, and the convergence issue is mild for TMCMC because the samples spread widely. Moreover, it can estimate the model evidence, a quantity essential for Bayesian model comparison, without extra computation cost. The effectiveness for the TMCMC algorithm is demonstrated through simulated examples and a real case study. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据