4.7 Article

Carboxylesterase Activities and Protein Expression in Rabbit and Pig Ocular Tissues

期刊

MOLECULAR PHARMACEUTICS
卷 18, 期 3, 页码 1305-1316

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.molpharmaceut.0c01154

关键词

Ocular tissues; carboxylesterase; arylacetamide deacetylase; pig; rabbit; targeted proteomics

资金

  1. EU-ITN project OCUTHER [722717]
  2. Doctoral Programme in Drug Research (University of Eastern Finland)

向作者/读者索取更多资源

This study analyzed the esterase activity and expression in ocular tissues of rabbits and pigs, revealing significant species and tissue differences in ocular hydrolytic enzymes, which can be important for the design of prodrugs and drug conjugates, evaluation of ocular effects of systemic drugs, and translational and toxicity studies.
Hydrolytic reactions constitute an important pathway of drug metabolism and a significant route of prodrug activation. Many ophthalmic drugs and prodrugs contain ester groups that greatly enhance their permeation across several hydrophobic barriers in the eye before the drugs are either metabolized or released, respectively, via hydrolysis. Thus, the development of ophthalmic drug therapy requires the thorough profiling of substrate specificities, activities, and expression levels of ocular esterases. However, such information is scant in the literature, especially for preclinical species often used in ophthalmology such as rabbits and pigs. Therefore, our aim was to generate systematic information on the activity and expression of carboxylesterases (CESs) and arylacetamide deacetylase (AADAC) in seven ocular tissue homogenates from these two species. The hydrolytic activities were measured using a generic esterase substrate (4-nitrophenyl acetate) and, in the absence of validated substrates for rabbit and pig enzymes, with selective substrates established for human CES1, CES2, and AADAC (D-luciferin methyl ester, fluorescein diacetate, procaine, and phenacetin). Kinetics and inhibition studies were conducted using these substrates and, again due to a lack of validated rabbit and pig CES inhibitors, with known inhibitors for the human enzymes. Protein expression levels were measured using quantitative targeted proteomics. Rabbit ocular tissues showed significant variability in the expression of CES1 (higher in cornea, lower in conjunctiva) and CES2 (higher in conjunctiva, lower in cornea) and a poor correlation of CES expression with hydrolytic activities. In contrast, pig tissues appear to express only CES1, and CES3 and AADAC seem to be either low or absent, respectively, in both species. The current study revealed remarkable species and tissue differences in ocular hydrolytic enzymes that can be taken into account in the design of esterase-dependent prodrugs and drug conjugates, the evaluation of ocular effects of systemic drugs, and in translational and toxicity studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据