4.6 Article

Repeatability of CBCT radiomic features and their correlation with CT radiomic features for prostate cancer

期刊

MEDICAL PHYSICS
卷 48, 期 5, 页码 2386-2399

出版社

WILEY
DOI: 10.1002/mp.14787

关键词

cone‐ beam CT; CT; prostate cancer; radiomics; radiotherapy

资金

  1. Varian Medical Systems, Palo Alto, CA [GR013242]

向作者/读者索取更多资源

This study investigated the quality of CBCT-based radiomic features and their relationship with reconstruction and preprocessing methods. It was found that CBCT radiomic features are generally more repeatable than reproducible, and certain features from specific classes showed high levels of repeatability and reproducibility. The study suggests that improving repeatability of CBCT radiomic features through reconstruction and preprocessing methods may decrease their reproducibility.
Purpose Radiomic features of cone-beam CT (CBCT) images have potential as biomarkers to predict treatment response and prognosis for patients of prostate cancer. Previous studies of radiomic feature analysis for prostate cancer were assessed in a variety of imaging modalities, including MRI, PET, and CT, but usually limited to a pretreatment setting. However, CBCT images may provide an opportunity to capture early morphological changes to the tumor during treatment that could lead to timely treatment adaptation. This work investigated the quality of CBCT-based radiomic features and their relationship with reconstruction methods applied to the CBCT projections and the preprocessing methods used in feature extraction. Moreover, CBCT features were correlated with planning CT (pCT) features to further assess the viability of CBCT radiomic features. Methods The quality of 42 CBCT-based radiomic features was assessed according to their repeatability and reproducibility. Repeatability was quantified by correlating radiomic features between 20 CBCT scans that also had repeated scans within 15 minutes. Reproducibility was quantified by correlating radiomic features between the planning CT (pCT) and the first fraction CBCT for 20 patients. Concordance correlation coefficients (CCC) of radiomic features were used to estimate the repeatability and reproducibility of radiomic features. The same patient dataset was assessed using different reconstruction methods applied to the CBCT projections. CBCT images were generated using 18 reconstruction methods using iterative (iCBCT) and standard (sCBCT) reconstructions, three convolution filters, and five noise suppression filters. Eighteen preprocessing settings were also considered. Results Overall, CBCT radiomic features were more repeatable than reproducible. Five radiomic features are repeatable in > 97% of the reconstruction and preprocessing methods, and come from the gray-level size zone matrix (GLSZM), neighborhood gray-tone difference matrix (NGTDM), and gray-level-run length matrix (GLRLM) radiomic feature classes. These radiomic features were reproducible in > 9.8% of the reconstruction and preprocessing methods. Noise suppression and convolution filter smoothing increased radiomic features repeatability, but decreased reproducibility. The top-repeatable iCBCT method (iCBCT-Sharp-VeryHigh) is more repeatable than the top-repeatable sCBCT method (sCBCT-Smooth) in 64% of the radiomic features. Conclusion Methods for reconstruction and preprocessing that improve CBCT radiomic feature repeatability often decrease reproducibility. The best approach may be to use methods that strike a balance repeatability and reproducibility such as iCBCT-Sharp-VeryLow-1-Lloyd-256 that has 17 repeatable and eight reproducible radiomic features. Previous radiomic studies that only used pCT radiomic features have generated prognostic models of prostate cancer outcome. Since our study indicates that CBCT radiomic features correlated well with a subset of pCT radiomic features, one may expect CBCT radiomics to also generate prognostic models for prostate cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据