4.7 Article

Capsules for biomedical image segmentation

期刊

MEDICAL IMAGE ANALYSIS
卷 68, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.media.2020.101889

关键词

Capsule network; Lung segmentation; Pre-clinical imaging; Thigh MRI segmentation

资金

  1. NIH [R01-EB020539, R01-CA246704]

向作者/读者索取更多资源

This research extends the use of capsule networks to object segmentation tasks, introducing locally-constrained routing and transformation matrix sharing to reduce parameter burden, proposing the concept of deconvolutional capsules. The SegCaps segmentation network shows outstanding performance in experiments.
Our work expands the use of capsule networks to the task of object segmentation for the first time in the literature. This is made possible via the introduction of locally-constrained routing and transformation matrix sharing, which reduces the parameter/memory burden and allows for the segmentation of objects at large resolutions. To compensate for the loss of global information in constraining the routing, we propose the concept of deconvolutional capsules to create a deep encoder-decoder style network, called SegCaps. We extend the masked reconstruction regularization to the task of segmentation and perform thorough ablation experiments on each component of our method. The proposed convolutional-deconvolutional capsule network, SegCaps, shows state-of-the-art results while using a fraction of the parameters of popular segmentation networks. To validate our proposed method, we perform experiments segmenting pathological lungs from clinical and pre-clinical thoracic computed tomography (CT) scans and segmenting muscle and adipose (fat) tissue from magnetic resonance imaging (MRI) scans of human subjects' thighs. Notably, our experiments in lung segmentation represent the largest-scale study in pathological lung segmentation in the literature, where we conduct experiments across five extremely challenging datasets, containing both clinical and pre-clinical subjects, and nearly 2000 computed-tomography scans. Our newly developed segmentation platform outperforms other methods across all datasets while utilizing less than 5% of the parameters in the popular U-Net for biomedical image segmentation. Further, we demonstrate capsules' ability to generalize to unseen handling of rotations/reflections on natural images. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据