4.6 Article

Nonlocal electromagnetic instability of carbon nanotube-based nano-sensor

出版社

WILEY
DOI: 10.1002/mma.7216

关键词

CNT; electromechanical nano‐ sensor; magnetic field; nonlocal elasticity; van der Waals

向作者/读者索取更多资源

This paper investigates the electromagnetic dynamic instability of a doubly clamped CNT-based nano-sensor considering external magnetic field, structural damping, and van der Waals force. The results show that the magnetic flux has a significant impact on the nano-sensor's dynamic instability voltage.
Carbon nanotube (CNT) manufactured nano-sensors have the potential for innovative applications and can be used in biological porous and particle accelerometer sensors. For these applications, the external magnetic field might affect the performance of these instruments. In this paper, the fundamental equations of motion of a doubly clamped CNT-based nano-sensor are calculated with regard to the nonlocal elasticity by using Hamilton's principle and Euler-Bernoulli beam model. By developing Maxwell's equation, we investigate the Lorentz forces due to an external magnetic field. We also incorporated the influence of the structural damping and van der Waals force in the developed model. Next, the system's nonlinearity is defined using von Karman nonlinear strains. A Galerkin procedure is developed for solving the system's nonlinear governing equation. Then, the impacts of underlying parameters such as material length scale, van der Waals force, damping, and the longitudinal magnetic field on the electromagnetic dynamic instability of the nano-sensor are examined. Finally, a closed-form solution for the oscillation behavior of CNT is presented by employing the homotopy perturbation method. The obtained results are validated by comparing with those available in the literature as well as a numerical solution. The outcomes demonstrated that the magnetic flux could drastically affect the nano-sensor's dynamic instability voltage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据