4.7 Article

Treatment of diabetic mice by microfluidic system-assisted transplantation of stem cells-derived insulin-producing cells transduced with miRNA

期刊

LIFE SCIENCES
卷 274, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2021.119338

关键词

Anti-miR-7; IPCs; Diabetes; Encapsulation; Microfluidics; miR-375

资金

  1. INSF: Iran National Science Foundation [97012980]

向作者/读者索取更多资源

The study successfully differentiated insulin-producing cells from adipose-derived stem cells, improved cell survival using a microfluidic system, and effectively treated diabetes in experimental animals.
Aims: Cell-based therapy is a promising approach for the treatment of type-1 diabetes mellitus. Identifying stem cells with differentiation potential to Insulin-producing cells (IPCs) and their application is an emerging issue. Different strategies have been used to support cell survival and their specific functions to control hyperglycemia conditions. Novel technologies using appropriate materials/fibers can improve cell transplantation. Main methods: In the present study, IPCs were differentiated from adipose-derived stem cells transduced with miR-375 and anti-miR-7. The cells' survival rate was also improved using a microfluidic system before their in vivo transplantation. Key findings: After adopting a stable, functional condition of the IPCs, the cells were used for in vivo grafting to diabetic mice, which resulted in a substantial drop in blood glucose during four weeks of grafting compared to the control group (p < 0.0001). The pattern of blood glucose levels in the mice receiving fiber entrapped IPCs, was similar to that of non-diabetic mice. Blood insulin was elevated in diabetic mice which received a transplant of fiber-entrapped-IPCs carrying miR-375 and anti-miR-7 after five weeks of transplantation compared to the diabetic mice (p < 0.014). Significance: For the first time, this study showed that the two-component microfluidic system is useful for supporting the Collagen-Alginate fiber-entrapped IPCs and the miRNA-based cell therapy. Overall, our data show that the IPC encapsulation using a microfluidic system can support the cells in terms of morphology and biological function and their efficiency for controlling the hyperglycemia condition in diabetic mice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据