4.4 Article

Base editing and prime editing in laboratory animals

期刊

LABORATORY ANIMALS
卷 56, 期 1, 页码 35-49

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0023677221993895

关键词

Animal models; base editing; prime editing; adenine base editing; cytosine base editing; gene therapy; transgenesis; CRISPR

资金

  1. Wellcome Trust [203141/Z/16/Z]
  2. Medical Research Council (MRC) studentship under the Oxford-MRC Doctoral Training Partnership

向作者/读者索取更多资源

Genome editing using programmable RNA-dependent Cas endonucleases has significantly improved efficiency and precision in targeted genomic changes, particularly through advancements like base editing. Despite limitations in possible base conversions, recent development in prime editing may offer a solution to expand the range of genome manipulations in laboratory animal research.
Genome editing by programmable RNA-dependent Cas endonucleases has revolutionised the field of genome engineering, achieving targeted genomic change at unprecedented efficiencies with considerable application in laboratory animal research. Despite its ease of use and wide application, there remain concerns about the precision of this technology and a number of unpredictable consequences have been reported, mostly resulting from the DNA double-strand break (DSB) that conventional CRISPR editing induces. In order to improve editing precision, several iterations of the technology been developed over the years. Base editing is one of most successful developments, allowing for single base conversions but without the need for a DSB. Cytosine and adenine base editing are now established as reliable methods to achieve precise genome editing in animal research studies. Both cytosine and adenine base editors have been applied successfully to the editing of zygotes, resulting in the generation of animal models. Similarly, both base editors have achieved precise editing of point mutations in somatic cells, facilitating the development of gene therapy approaches. Despite rapid progress in optimising these tools, base editing can address only a subset of possible base conversions within a relatively narrow window and larger genomic manipulations are not possible. The recent development of prime editing, originally defined as a simple 'search and replace' editing tool, may help address these limitations and could widen the range of genome manipulations possible. Preliminary reports of prime editing in animals are being published, and this new technology may allow significant advancements for laboratory animal research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据