4.7 Article

Stochastic properties of static friction

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2020.104242

关键词

Frictional strength; Critical shear stress; Critical nucleation length; Random interface properties; Homogenization

向作者/读者索取更多资源

Study shows that random frictional strength on interfaces results in variability in the global static friction. Increasing spatial correlation length on the interface causes lower global static friction, while smaller correlation length increases macroscopic strength and decreases variability.
The onset of frictional motion is mediated by rupture-like slip fronts, which nucleate locally and propagate eventually along the entire interface causing global sliding. The static friction coefficient is a macroscopic measure of the applied force at this particular instant when the frictional interface loses stability. However, experimental studies are known to present important scatter in the measurement of static friction; the origin of which remains unexplained. Here, we study the nucleation of local slip at interfaces with slip-weakening friction of random strength and analyze the resulting variability in the measured global strength. Using numerical simulations that solve the elastodynamic equations, we observe that multiple slip patches nucleate simultaneously, many of which are stable and grow only slowly, but one reaches a critical length and starts propagating dynamically. We show that a theoretical criterion based on a static equilibrium solution predicts quantitatively well the onset of frictional sliding. We develop an efficient Monte-Carlo model by adapting the theoretical criterion and study the variability in global strength distribution caused by the stochastic properties of local frictional strength. The results demonstrate that an increasing spatial correlation length on the interface, representing geometric imperfections and roughness, causes lower global static friction. Conversely, smaller correlation length increases the macroscopic strength while its variability decreases. We further show that randomness in local friction properties is insufficient for the existence of systematic precursory slip events. Random or systematic non-uniformity in the driving force, such as potential energy or stress drop, is required for arrested slip fronts. Our model and observations provide a necessary framework for efficient stochastic analysis of macroscopic frictional strength and establish a fundamental basis for probabilistic design criteria for static friction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据