4.8 Article

Enhanced Cuprophilic Interactions in Crystalline Catalysts Facilitate the Highly Selective Electroreduction of CO2 to CH4

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 143, 期 10, 页码 3808-3816

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c11450

关键词

-

资金

  1. NSFC [21871141, 21871142, 92061101, 21901122, 21901035]
  2. Foundation of Jilin Educational Committee [JJKH20190268KJ]
  3. China Postdoctoral Science Foundation [2018M630572, 2019M651873]
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions
  5. Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials

向作者/读者索取更多资源

Cu(I)-based catalysts are essential for the electrocatalytic CO2 reduction, and in this study, two stable copper(I)-based catalysts with inherent cuprophilic interactions were synthesized for highly selective CO2-to-CH4 conversion. The substitution of sulfate radicals with hydroxyl radicals led to a dynamic crystal structure transition, enhancing the cuprophilic interactions inside the catalyst structure. The enhanced cuprophilic interactions in NNU-33(H) showed outstanding CH4 selectivity, representing the best crystalline catalyst for electrocatalytic CO2-to-CH4 conversion.
Cu(I)-based catalysts have proven to play an important role in the formation of specific hydrocarbon products from electrochemical carbon dioxide reduction reaction (CO2RR). However, it is difficult to understand the effect of intrinsic cuprophilic interactions inside the Cu(I) catalysts on the electrocatalytic mechanism and performance. Herein, two stable copper(I)-based coordination polymer (NNU-32 and NNU-33(S)) catalysts are synthesized and integrated into a CO2 flow cell electrolyzer, which exhibited very high selectivity for electrocatalytic CO2 -to-CH4 conversion due to clearly inherent intramolecular cuprophilic interactions. Substitution of hydroxyl radicals for sulfate radicals during the electrocatalytic process results in an in situ dynamic crystal structure transition from NNU-33(S) to NNU-33(H), which further strengthens the cuprophilic interactions inside the catalyst structure. Consequently, NNU-33(H) with enhanced cuprophilic interactions shows an outstanding product (CH4) selectivity of 82% at -0.9 V (vs reversible hydrogen electrode, j = 391 mA cm(-2) ), which represents the best crystalline catalyst for electrocatalytic CO2-to-CH4 conversion to date. Moreover, the detailed DFT calculations also prove that the cuprophilic interactions can effectively facilitate the electroreduction of CO2 to CH4 by decreasing the Gibbs free energy change of potential determining step (*H-2 COOH -> *OCH2). Significantly, this work first explored the effect of intrinsic cuprophilic interactions of Cu(I)-based catalysts on the electrocatalytic performance of CO2RR and provides an important case study for designing more stable and efficient crystalline catalysts to reduce CO2 to high-value carbon products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据