4.8 Article

Synergistic Effect of Fluorinated Passivator and Hole Transport Dopant Enables Stable Perovskite Solar Cells with an Efficiency Near 24%

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 143, 期 8, 页码 3231-3237

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c12802

关键词

-

资金

  1. China Scholarship Council
  2. King Abdulaziz City for Science and Technology (KACST)
  3. European Union's Horizon 2020 research and innovation program [826013]
  4. National Science Foundation of China [21676188]
  5. H2020 Societal Challenges Programme [826013] Funding Source: H2020 Societal Challenges Programme

向作者/读者索取更多资源

The study introduces a trifluoromethylation strategy using TFMBAI and TFP as additives to improve the PCE and moisture resistance of PSCs. By surface treating the perovskite with TFMBAI and adding TFP to the HTL, the PSCs achieved a higher efficiency and improved durability against moisture attack.
Long-term durability is critically important for the commercialization of perovskite solar cells (PSCs). The ionic character of the perovskite and the hydrophilicity of commonly used additives for the hole-transporting layer (HTL), such as lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) and tert-butylpyridine (tBP), render PSCs prone to moisture attack, compromising their long-term stability. Here we introduce a trifluoromethylation strategy to overcome this drawback and to boost the PSC's solar to electric power conversion efficiency (PCE). We employ 4-(trifluoromethyl)benzylammonium iodide (TFMBAI) as an amphiphilic modifier for interfacial defect mitigation and 4-(trifluoromethyl)pyridine (TFP) as an additive to enhance the HTL's hydrophobicity. Surface treatment of the triple-cation perovskite with TFMBAI largely suppressed the nonradiative charge carrier recombination, boosting the PCE from 20.9% to 23.9% and suppressing hysteresis, while adding TFP to the HTL enhanced the PCS's resistance to moisture while maintaining its high PCE. Taking advantage of the synergistic effects resulting from the combination of both fluoromethylated modifiers, we realize TFMBAI/TFP-based highly efficient PSCs with excellent operational stability and resistance to moisture, retaining over 96% of their initial efficiency after 500 h maximum power point tracking (MPPT) under simulated 1 sun irradiation and 97% of their initial efficiency after 1100 h of exposure under ambient conditions to a relative humidity of 60-70%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据