4.8 Article

A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm-2 and 20 mAh cm-2

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 143, 期 8, 页码 3143-3152

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c11753

关键词

-

资金

  1. Innovation Fund of Wuhan National Laboratory for Optoelectronics of Huazhong University of Science and Technology
  2. China Postdoctoral Science Foundation [2018M640694, 2020T130223]
  3. DOE Office of Science [DE-SC0012704]
  4. US Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, through Advanced Battery Material Research (BMR) program [DE-SC0012704]
  5. Singapore National Research Foundation [NRF-NRFF2017-04]

向作者/读者索取更多资源

Metal anodes are a promising choice for high energy density rechargeable batteries, but face challenges like volume variation and side reactions. A novel interdigitated metal/solid electrolyte composite electrode was fabricated using a replacement reaction, providing a stable host structure and preventing side reactions. This design demonstrated stable electrochemical performance and low overpotential, outperforming other reported metal electrodes.
Metal anodes represent as a prime choice for the coming generation rechargeable batteries with high energy density. However, daunting challenges including electrode volume variation and inevitable side reactions preclude them from becoming a viable technology. Here, a facile replacement reaction was employed to fabricate a three-dimensional (3D) interdigitated metal/solid electrolyte composite electrode, which not only provides a stable host structure for buffering the volume change within the composite but also prevents side reactions by avoiding the direct contact between active metal and liquid electrolyte. As a proof-of-concept demonstration, a 3D interdigitated zinc (Zn) metal/solid electrolyte architecture was fabricated via a galvanic replacement reaction between Zn metal foil and indium (In) chloride solution followed by electrochemical activation, featuring the interdigitation between metallic Zn and amorphous indium hydroxide sulfate (IHS) with high Zn2+ conductivity (56.9 +/- 1.8 mS cm(-1)), large Zn2+ transference number (0.55), and high electronic resistivity [(2.08 +/- 0.01) x 10(3) Omega cm]. The as-designed Zn/IHS electrode sustained stable electrochemical Zn plating/stripping over 700 cycles with a record-low overpotential of 8 mV at 1 mA cm(-2) and 0.5 mAh cm(-2). More impressively, it displayed cycle-stable performance with low overpotential of 10 mV under ultrahigh current density and areal capacity (20 mA cm(-2), 20 mAh cm(-2)), which outperformed all the reported Zn metal electrodes in mild aqueous electrolyte. The fabrication of interdigitated metal/solid electrolyte was generalized to other metal pairs, including Zn/Sn and Zn/Co, which provide inspiration for next-generation Zn metal batteries with high energy density and reversibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据