4.5 Article

Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses

期刊

JOURNAL OF PROTEOMICS
卷 234, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jprot.2020.104097

关键词

Wheat; Physiological characteristics; Label-free; Chloroplast proteome; Salt stress; Osmotic stress

资金

  1. Ministry of Science and Technology China [2016YFD0100502]

向作者/读者索取更多资源

This study examined the changes in wheat chloroplast proteome under salt and osmotic stresses, revealing significant alterations in DAPs associated with different metabolic pathways. The results provide valuable insights into the response and defense mechanisms of the wheat chloroplast proteome to abiotic stresses.
In this study, we performed an integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses by label-free based quantitative proteomic approach. Both salt and osmotic stresses significantly increased the levels of abscisic acid and methyl jasmonate and led to damages of chloroplast ultrastructure. Main parameters of chlorophyll fluorescence and gas exchange showed a significant decline under both stresses. Quantitative proteomic analysis identified 194 and 169 chloroplast-localized differentially accumulated proteins (DAPs) responsive to salt and osmotic stresses, respectively. The abundance of main DAPs involved in light-dependent reaction were increased under salt stress, but decreased in response to osmotic stress. On the contrary, salt stress induced a significant upregulation of the DAPs associated with Calvin cycle, transcription and translation, amino acid metabolism, carbon and nitrogen metabolism, and some of them exhibited a downregulation under osmotic stress. In particular, both treatments significantly upregulated the DAPs involved in plastoglobule development, protein folding and proteolysis, hormone and vitamin synthesis. Finally, we proposed a putative synergistic responsive network of wheat chloroplast proteome under salt and osmotic stresses, aiming to provide new insights into the underlying response and defense mechanisms of wheat chloroplast proteome in response to abiotic stresses. Significance: Salt and osmotic stresses are the two most common abiotic stresses that severely affect crop growth and productivity. As the main site of photosynthesis of plant cells, the chloroplast also plays important role in plant tolerance to abiotic stress. However, the response of chloroplast proteome to salt and osmotic is still poorly understood by using the traditional two-dimensional electrophoresis (2-DE) method due to a poor resolution of chloroplast protein separation and low throughput identification of differentially accumulated proteins (DAPs). In this study, we employed label-free based quantitative proteomic approach to perform an integrated physiological and large-scale chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses, which laid a solid foundation for future studies into the response and defense mechanisms of wheat chloroplast in response to abiotic stresses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据