4.8 Article

Investigating electrode calendering and its impact on electrochemical performance by means of a new discrete element method model: Towards a digital twin of Li-Ion battery manufacturing

期刊

JOURNAL OF POWER SOURCES
卷 485, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2020.229320

关键词

Lithium-ion batteries; Manufacturing; Digital twin; Calendering; Dicrete element method; Electrode mesostructure

资金

  1. European Union's Horizon 2020 research and innovation programme through the European Research Council [772873]
  2. Institut Universitaire de France

向作者/读者索取更多资源

This study presents an experimentally validated calendering model that optimizes the manufacturing of lithium-ion batteries by considering the active material and carbon-binder domain, improving their performance. The effect of calendering on the electrode mesostructure was analyzed, leading to insights into the links between calendering pressure, electrode mesostructure, and overall performance.
Lithium-ion battery (LIB) manufacturing optimization is crucial to reduce its CO2 fingerprint and cost, while improving their electrochemical performance. In this article, we present an experimentally validated calendering Discrete Element Method model for LiNi0.33Mn0.33Co0.33O2-based cathodes by considering explicitly both active material (AM) and carbon-binder domain (CBD). This model was coupled to a pre-existing Coarse-Grained Molecular Dynamics model describing the slurry equilibration and its drying and a 4D-resolved Finite Element Method model for predicting electrochemical performance. Our calendering model introduces important novelties versus the state of the art, such as the utilization of un-calendered electrode mesostructures resulting from validated simulations of the slurry and drying combined with the explicit consideration of the spatial distribution and interactions between AM and CBD particles, and its validation with both experimental micro-indentation and porosity vs. calendering pressure curves. The effect of calendering on the electrode mesostructure is analyzed in terms of pore size distribution, tortuosity factor and particles arrangement. In addition, the evolution of the macroscopic electrochemical behavior of the electrodes upon the degree of calendering is discussed, offering added insights into the links between the calendering pressure, the electrode mesostructure and its overall performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据