4.6 Article

Terahertz plasmonic sensing based on tunable multispectral plasmon-induced transparency and absorption in graphene metamaterials

期刊

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6463/abec0c

关键词

surface plasmon resonance; multispectral plasmon-induced transparency and absorption; plasmonic sensing

资金

  1. National Natural Science Foundation of China [61275174]

向作者/读者索取更多资源

In this paper, an easily implemented monolayer graphene structure is proposed for achieving triple plasmon-induced transparency and absorption effects. By altering the Fermi energy and carrier mobility of graphene, the absorption intensity can be dynamically controlled over a broadband frequency range. The triple plasmon-induced absorption spectrum shows 20 times more absorption bands compared to monolayer graphene, with a sensitivity of 0.4 THz RIU-1 for terahertz plasmonic sensing applications.
Graphene surface plasmons have gained wide interest due to their promising applications in terahertz technology. In this paper, we propose an easily implemented monolayer graphene structure, and exploit its quadra resonance mode to achieve triple plasmon-induced transparency (PIT) and triple plasmon-induced absorption (PIA) effects. A uniform theoretical model with four resonators is introduced to elaborate the intrinsic coupling mechanism and examine the accuracy of simulated results. By altering the Fermi energy and the carrier mobility of the graphene, the proposed triple PIT (PIA) system exhibits a dynamically tunable property, and the absorption intensity can be controlled over a broadband frequency range. It is found that the absorption intensity of the triple PIA spectrum can be as high as 50% with four absorption bands, which is 20 times more than that of monolayer graphene. Besides, we further investigate the triple PIT system for terahertz plasmonic sensing applications, and it is shown that the highest sensitivity of 0.4 THz RIU-1 is reached. Thus, the triple PIT system we propose can be employed for multi-band light absorption and plasmonic optical sensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据