4.7 Article

Failure mechanisms in unirradiated ZIRLO® cladding with radial hydrides

期刊

JOURNAL OF NUCLEAR MATERIALS
卷 544, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jnucmat.2020.152668

关键词

Zirlo; Cladding; Radial hydrides; Failure mechanisms; Ring compression test

资金

  1. BRUZL research project by the German Federal Ministry for Economic Affairs and Energy (BMWi) [1501561]
  2. European Union's Horizon 2020 research and innovation programme [847593]
  3. Spanish Ministry of Science and Innovation and Universities [RTI2018-097221-BI00, PGC2018-097116-A-I00]

向作者/读者索取更多资源

This study investigates the relationship between hydride morphology, especially radial hydrides, stress state, and failure mechanisms associated with the ring compression test (RCT). The results show that the reorientation of hydrides significantly affects the RCT outcomes, confirming the interaction between hydride location and continuity with the hoop stress on crack initiation.
The purpose of this paper is to investigate the relationship between hydride morphology, in particular the presence of radial hydrides (RHs), stress state and failure mechanisms associated with the ring compression test (RCT). Samples of ZIRLO (R) cladding were pre-hydrided and subjected to thermo-mechanical treatments to precipitate long radial hydrides. The results show that the reorientation treatment was very successful. A considerable fraction of RHs was generated, the radial hydride continuity factor being around 80 to 90% of the wall thickness. The samples with reoriented hydrides were tested using the RCT at room temperature. Macroscopic brittle failure was observed with sudden load drops for displacements around 0.5 mm, with a calculated offset strain between 0.5 and 1%. Crack nucleation occurs in RHs located in regions with the highest values of hoop stress. These locations are the inner diameter of cladding at the vertical plane of the sample (12 and 6 o'clock positions) and the outer diameter at the horizontal plane (3 and 9 o'clock positions). Noticeable load drops in the RCT are associated with unstable crack propagation events through the radial hydride network, the crack front reaching up to 90% of the wall thickness in some cases. The failure micro-mechanism is quasi-cleavage in the hydrides and micro-void nucleation, growth and coalescence in the Zr matrix, with ductile tearing patches connecting neighboring hydrides. The main conclusion is that radial hydride metrics is not the only parameter that determines cladding failure in the presence of RHs, but the interaction between the location and continuity of RHs and the stress normal to the hydride (the hoop stress in this case). Consequently, if a radial hydride is located at a position within the cladding where the hoop stress is small, a crack will not be initiated easily in the RCT. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据