4.7 Article

Geopolymerization of class C fly ash: Reaction kinetics, microstructure properties and compressive strength of early age

期刊

JOURNAL OF NON-CRYSTALLINE SOLIDS
卷 553, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jnoncrysol.2020.120519

关键词

Heat evolution; Calorimetry; Class C fly ash geopolymerization; Solid-to-liquid ratio; Nucleation mechanism; Microstructure properties

资金

  1. Fundamental Research Grant Scheme (FRGS) from Ministry of Higher Education Malaysia [9003-00747 FRGS/1/2019/TK06/UNIMAP/02/1]
  2. FMIPA Universitas Negeri Makassar (UNM) Grant

向作者/读者索取更多资源

This study aims to elucidate the geopolymerization of Class C fly ash at different solid-to-liquid ratios through heat evolution analysis. The nucleation mechanism was found to be governed by heterogeneous nucleation with rod-like growth. A solid-to-liquid ratio of 2.5 was identified as optimal, with the contribution of calcium and iron confirmed through various analyses.
The main objective in this study is to elucidate the geopolymerization of Class C fly ash at different solid-to-liquid ratio (1.0-3.0) by using heat evolution analysis. Differential Scanning Calorimeter was used to monitor heat evolution. The calculated heat evolved was utilized to analyze the reaction kinetics using Johnson-Mehl-Avrami-Kolmogrov Model and correlate with the compressive strength and microstructural properties encompassing morphology, functional group, phase analysis, and elemental distribution. The heat evolution was found to increase with increasing solid-to-liquid ratios. The nucleation mechanism of geopolymerization of Class C fly ash was governed by instantaneous heterogeneous nucleation with rod-like growth. Solid-to-liquid ratio of 2.5 was concluded as optimal ratio due to its great performance for strength development. Meanwhile the contribution of calcium (Ca) and iron (Fe) was confirmed due to the presence of Si-O-Ca and Si-O-Fe bonds in the functional group analysis, which was further confirmed by phase analysis and elemental distribution mapping.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据