4.7 Article

Interactions between promethazine hydrochloride drug and sodium benzoate hydrotrope mixtures in various solvent media at different temperatures

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 325, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2020.115188

关键词

Phenothiazine drug; Micellar mole fraction; Theoretical models; FT-IR; Thermodynamic parameters

资金

  1. Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah [DF-119-130-1441]

向作者/读者索取更多资源

The study investigated the mixed micellization of a phenothiazine drug, promethazine hydrochloride (PMT), with the anionic hydrotrope sodium benzoate (NaB) in different solvent media, showing that interactions between components affect the formation of mixed micelles in various solvents.
The current study investigated the mixed micellization of a phenothiazine drug, promethazine hydrochloride (PMT), with the anionic hydrotrope sodium benzoate (NaB) using a conductometric method in three different solvent media: water, 50 mmol.kg(-1) sodium chloride (NaCl), and 300 mmol.kg(-1) urea (U). Five different temperatures, ranging from 293.15 to 313.15 K, were chosen for the current study of both pure and mixed systems. PMT belongs to a class of drugs known as antihistamines, which are used to treat allergy symptoms. Various physicochemical parameters of both pure and mixed systems (PMT-NaB) were evaluated at different compositions and temperatures, using numerous theoretical models associated with mixed micellization. The attained critical micelle concentration (cmc) and ideal cmc (cmc(id)) values indicated the formation of mixed micelles due to interactions between the components. The evaluated cmc value for PMT, the minimum hydrotropic concentration (mhc) of NaB, and the cmc value for the PMT+NaB mixture decreased in the NaCl system and increased in the U system compared with these values in the aqueous solution. The cmc values of the studied mixed systems decrease due to an upsurge in the mole fraction (alpha(1)) of NaB, indicating the non-ideality of the evaluated solution mixtures. The interaction parameter (beta) was negative, revealing that the interaction between the constituents increased with the increasing alpha(1) of NaB in aqueous solution. In the NaCl solution, the beta value increased, whereas, in the U solution, the value decreased. The degree of dissociation (g) values decreased by increasing the alpha(1) of NaB in the solution mixture. Various thermodynamic parameters were also evaluated in detail. The activity coefficient values in all cases were below unity, which further indicated the non-ideality of the system. The assessed excess free energy (Delta G(ex)(Rb)) of the system was found to be negative in all cases, displaying the stability of the formed mixed micelles. Across the different solvents, their magnitudes were observed in the following order: Delta G(ex)(Rb) in NaCl > Delta G(ex)(Rb) in water > Delta G(ex)(Rb) in U. An ultraviolet (UV)-visible study showed a clear interaction between NaB and PMT in the aqueous system. A Fourier-transform-infrared (FT-IR) spectroscopy investigation revealed a shift in the frequency bands of the components due to the interactions between them. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据