4.7 Article

Studies on physicochemical properties of three Gemini surfactants with different spacer groups

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 325, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2020.115039

关键词

Gemini surfactant; Spacer group; Surface/interface properties; Electrolytes tolerance and thermal stability

资金

  1. National Key R&D Program of China [2017YFB0308900]
  2. JALA Research Funds [JALA 2018]

向作者/读者索取更多资源

The effect of different spacer groups on the performance of Gemini surfactants was investigated, with ZGS-S showing the strongest ability to reduce surface tension and highest electrolytes tolerance among the three surfactants. CGS-O exhibited the lowest performance in terms of surface tension reduction and electrolytes tolerance.
Three Gemini surfactants with the same hydrophobic chain but different spacer groups, including two cationic Gemini surfactants (CGS and CGS-O) and a zwitterionic Gemini surfactant (ZGS-S), were synthesized, and their chemical structures were characterized by FT-IR and H-1 NMR. The effect of spacer group on surface/interface activity, interfacial tension at the oil-water interface, wetting ability, electrolytes tolerance and thermal stability was determined. The results showed the structure of spacer group has a certain influence on the surface/interface activity. Among the three Gemini surfactants, ZGS-S has the strongest ability to reduce surface tension, followed by CGS-O. Three Gemini surfactants can reduce the oil-water interfacial tension to ultra-low value, but the time required to reach the minimum value is different, indicating that the surfactant molecules move at different adsorption rates from solution to the interface. This phenomenon is also confirmed by dynamic surface tension and dynamic contact angle tests. Compared with CGS, CGS-O molecules move slower in the solution, while the adsorption rate of ZGS-S on the interface surpasses that of CGS near the critical micelle concentration. Among the three Gemini surfactants, the electrolytes tolerance of ZGS-S is the strongest, while CGS-O is the lowest. The introduction of sulfate group in spacer group reduces the thermal stability of Gemini surfactant. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据