4.7 Article

A novel photobioreactor creating fluctuating light from solar energy for a higher light-to-biomass conversion efficiency

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 126, 期 -, 页码 767-773

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2016.08.045

关键词

Fluctuating light; Light and dark cycle; Nanochloropsis; Photobioreactor; Solar energy

资金

  1. NATO - Belgium [SFP 981883]

向作者/读者索取更多资源

Microalgae represent an exciting resource for biomass, biofuel, valuable chemicals, and they contribute to CO2 sequestration, thereby mitigating the increase in global warming. Similar to the other solar energy harvesting techniques for commercial purposes, the productivity of algal photosynthesis depends on the absorption and utilization efficiency of the solar irradiance by algae. Here we demonstrate a novel tubular photobioreactor that generates fluctuating light of controlled successive high and low intensities from sunlight, resembling light behavior in aquatic ecosystems, which favors the microalgae growth. The developed photobioreactor significantly increased the photosynthetic rate and growth of microalgae, with a higher light-to-biomass conversion efficiency than conventional photobioreactors, as cell doubling rate and biomass productivity increased >55% when the fluctuating frequency was set at 60 Hz providing similar to 100% and similar to 30% of total intensity, successively. The proposed photobioreactor enables an efficient mechanism that introduces a sufficient light-dose to the photosynthesizing organisms without fronting moments of photoinhibition or limiting photosynthesis by dark intervals, which can be a feasible and promising technology for large-scale production of microalgae. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据