4.6 Article

Lipid remodeling in response to methionine stress in MDA-MBA-468 triple-negative breast cancer cells

期刊

JOURNAL OF LIPID RESEARCH
卷 62, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jlr.2021.100056

关键词

cancer metabolism; homocysteine; methionine; methionine stress; lipid metabolism; lipid droplets; phospholipids; fatty acid metabolism; triglycerides

资金

  1. West Coast Metabolomics Center, United States [NIH-DK097154]
  2. National Institutes of Health, United States [R01GM128432, R21CA242270]

向作者/读者索取更多资源

The study reveals that Met stress in triple-negative breast cancer cells leads to a global decrease in lipid abundances, except for triglycerides, and an increase in lipid droplets. Additionally, specific gene expression changes were observed in response to Met stress in the cells.
Methionine (Met) is an essential amino acid and critical precursor to the cellular methyl donor S-adenosylmethionine. Unlike nontransformed cells, cancer cells have a unique metabolic requirement for Met and are unable to proliferate in growth media where Met is replaced with its metabolic precursor, homocysteine. This metabolic vulnerability is common among cancer cells regardless of tissue origin and is known as methionine dependence, methionine stress sensitivity, or the Hoffman effect. The response of lipids to Met stress, however, is not well-understood. Using mass spectroscopy, label-free vibrational microscopy, and next-generation sequencing, we characterize the response of lipids to Met stress in the triple-negative breast cancer cell line MDA-MB-468 and its Met stress insensitive derivative, MDA-MB-468res-R8. Lipidome analysis identified an immediate, global decrease in lipid abundances with the exception of triglycerides and an increase in lipid droplets in response to Met stress specifically in MDA-MB-468 cells. Furthermore, specific gene expression changes were observed as a secondary response to Met stress in MDA-MB-468, resulting in a downregulation of fatty acid metabolic genes and an upregulation of genes in the unfolded protein response pathway. We conclude that the extensive changes in lipid abundance during Met stress is a direct consequence of the modified metabolic profile previously described in Met stress-sensitive cells. The changes in lipid abundance likely results in changes in membrane composition inducing the unfolded protein response we observe.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据