4.7 Article

Regional hydrological frequency analysis at ungauged sites with random forest regression

期刊

JOURNAL OF HYDROLOGY
卷 594, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2020.125861

关键词

Random Forest Regression; Canonical correlation analysis; Regional flood frequency analysis; Ungauged basin; Machine learning; Regional estimation

资金

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada

向作者/读者索取更多资源

This study investigates the use of Random Forest Regression (RFR) in flood quantile estimation at sites with limited or no data. Through a case study based on data collected from 151 hydrometric stations in Quebec, Canada, it is found that delineating neighborhoods using Canonical Correlation Analysis (CCA) significantly improves the performance of RFR.
Flood quantile estimation at sites with little or no data is important for the adequate planning and management of water resources. Regional Hydrological Frequency Analysis (RFA) deals with the estimation of hydrological variables at ungauged sites. Random Forest (RF) is an ensemble learning technique which uses multiple Classification and Regression Trees (CART) for classification, regression, and other tasks. The RF technique is gaining popularity in a number of fields because of its powerful non-linear and non-parametric nature. In the present study, we investigate the use of Random Forest Regression (RFR) in the estimation step of RFA based on a case study represented by data collected from 151 hydrometric stations from the province of Quebec, Canada. RFR is applied to the whole data set and to homogeneous regions of stations delineated by canonical correlation analysis (CCA). Using the Out-of-bag error rate feature of RF, the optimal number of trees for the dataset is calculated. The results of the application of the CCA based RFR model (CCA-RFR) are compared to results obtained with a number of other linear and non-linear RFA models. CCA-RFR leads to the best performance in terms of root mean squared error. The use of CCA to delineate neighborhoods improves considerably the performance of RFR. RFR is found to be simple to apply and more efficient than more complex models such as Artificial Neural Networkbased models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据