4.7 Article

Balance of activation and ring-breaking for toluene oxidation over CuO-MnOx bimetallic oxides

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 415, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.125637

关键词

CuMn bimetallic oxides; Toluene oxidation; DFT; Time-resolved in situ DRIFTs

资金

  1. National Natural Science Foundation of China [21876093, 21777081]

向作者/读者索取更多资源

CuMn bimetallic oxides were synthesized for the catalytic oxidation of toluene in this study, with Cu2Mn1 showing the highest oxidation rate and benzoic acid as the only observed intermediate. DFT simulations revealed that in the O-Cu-O-Mn-O structure, Mn-O site was more effective for activation while Cu-O primarily acted as an adsorption site.
CuMn oxides have been studied for many years to catalytic degradation of toluene, but there are still many divergences on the essence of their great catalytic activity and reaction mechanism. A series of CuMn bimetallic oxides were synthesized for the catalytic oxidation of toluene in this study. Cu2Mn1 exhibited the highest toluene oxidation rate per specific surface area, which was approximately 4 times that of monometallic CuO and Mn3O4. Benzoic acid was the only intermediates which could be observed during toluene oxidation. Between monometallic CuO and Mn3O4, toluene was more difficult to be activated by Mn3O4 to generate benzoic acid (toluene activation), whereas benzoic acid was oxidized (ring-breaking) by CuO with more difficulty. As for CuMn, the superior reducibility combined with the balance between ring-breaking of benzoic acid and activation of toluene-to-benzoic acid determined the high toluene oxidation rate. DFT simulations exhibited that in O-Cu-O-Mn-O structure, the Mn-O site was a more effective activation site for toluene-to-benzoic acid oxidation, whereas Cu-O mainly performed as an adsorption site for toluene. This work identifies the different roles of Cu and Mn entities in toluene oxidation and provides the novel design strategy for toluene removal catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据