4.7 Article

Mechanisms for the stimulatory effects of a five-component mixture of antibiotics in Microcystis aeruginosa at transcriptomic and proteomic levels

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 406, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.124722

关键词

Cyanobacteria; Hormesis; RNA-sequencing; ITRAQ; Microcystins

资金

  1. National Natural Science Foundation of China, China [51679130]
  2. Fundamental Research Funds of Shandong University, China [2017WLJH35]

向作者/读者索取更多资源

Mixed antibiotics can stimulate the growth and microcystin synthesis of Microcystis aeruginosa by activating photosynthesis, carbon metabolism, and other pathways to enhance resistance to oxidative stress. This study provides insights into the mechanisms underlying the hormetic stimulation of harmful cyanobacterial blooms by antibiotic contaminants.
Antibiotic contaminants could promote the formation of harmful cyanobacterial blooms through hormetic stimulation, but the mechanisms underlying these stimulatory effects remain unclear. This study investigated the biochemical, transcriptomic, and proteomic responses of a dominant bloom-forming cyanobacterium, Microcystis aeruginosa, to a five-component mixture of frequently detected antibiotics at current contamination levels. The growth rate of M. aeruginosa presented a U-shaped dose-response to 50-500 ng L-1 of mixed antibiotics. Alterations in the transcriptome of M. aeruginosa suggested the excitation of both photosynthesis and carbon metabolism, increasing energy generation in response to oxidative stress induced by low-dose antibiotics, and thus contributing to the significant (p < 0.05) increase in growth rate, F-v/F-m, and cell density. Comparison between transcriptomic and proteomic responses further confirmed the action mode of the mixed antibiotics. Proteins and their corresponding genes related to ROS scavenging, photosynthesis, carbon fixation, electron transport, oxidative phosphorylation, and biosynthesis, showed consistent expression tendencies in response to 200 ng L-1 of mixed antibiotics, which were credible action targets of mixed antibiotics in M. aeruginosa. Mixed antibiotics stimulated microcystin synthesis by upregulating a microcystin synthetase and its encoding gene (mcyC), which could increase the hazard of M. aeruginosa in aquatic environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据