4.7 Article

Degradation of polylactic acid/polybutylene adipate-co-terephthalate by coculture of Pseudomonas mendocina and Actinomucor elegans

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 403, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.123679

关键词

biodegradable; PLA/PBAT; coculture; biodegradation mechanism

资金

  1. Research Fund at the Shaanxi Provincial Science and Technology Department of China [2018SF-375]
  2. Beijing Key Laboratory of Plastics Health and Safety Quality Evaluation Technology, Beijing Technology and Business University [TQETJP2018 004]

向作者/读者索取更多资源

Cocultivation of Pseudomonas mendocina with Actinomucor elegans significantly improved the biodegradation of PLA/PBAT films by producing an efficient enzyme system. The protease and lipase activity of the coculture exceeded that of the monoculture, leading to a higher degradation rate of PLA/PBAT films.
A cocultivation of the Pseudomonas mendocina with Actinomucor elegans was developed and investigated to improve the biodegradation of polylactic acid/polybutylene adipate-co-terephthalate (PLA/PBAT). And the coculture system could produce an efficient PLA/PBAT-degrading enzymes system to degrade PLA/PBAT films. The results showed that the protease activity (11.50 U/mL) and lipase activity (40.46 U/mL) of the coculture exceeded that of the monoculture (P. mendocina of 7.31 U/mL, A. elegans of 32.47 U/mL). The degradation rate of PLA/PBAT films using the coculture system was 18.95 wt% within 5 days, which was considerably higher than that of P. mendocina (12.94 wt%) and A. elegans (9.27 wt%) individually, suggesting that P. mendocina and A. elegans had synergistic degradation. In addition, P. mendocina and A. elegans could secrete proteases and lipases, respectively, which could catalyze the ester bonds of PLA1 and PBAT in PLA/PBAT films, respectively, and hydrolyze them into different monomers and oligomers as nutrition sources. Therefore, the PLA/PBAT films could be completely degraded. In this study, the PLA/PBAT films were efficiently degraded in the coculture system for the first time, which significantly improved the biodegradation of PLA/PBAT films.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据