4.7 Article

The mechanism changes during bisphenol A degradation in three iron functionalized biochar/peroxymonosulfate systems: The crucial roles of iron contents and graphitized carbon layers

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 404, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.124145

关键词

Carbon; Iron nanoparticle; PMS; SO4 center dot-; Electron transfer

资金

  1. National Natural Science Foundation of China [41907150]
  2. special fund for topnotch talents in Henan Agricultural University [30500600]
  3. Project Plan of Key Scientific Research Project of Colleges and Universities in Henan Province [19A610001]

向作者/读者索取更多资源

Three magnetic biochar nanocomposites were prepared with different catalytic performances for bisphenol A degradation, where C800-3 showed the best performance. The dominant role of electron transfer pathway was gradually replaced by the SO4 center dot- pathway with the increase of iron amount and the destruction of graphitized carbon layers.
Three magnetic biochar nanocomposites named as C800-1, C800-2 and C800-3 with increased iron deposition amount, decreased graphitized degree and gradually destroyed graphitized carbon layers, respectively, were prepared using potassium ferrate as activator and corn straw as biomass. C800-1, C800-2 and C800-3 exhibited much different bisphenol A degradation effect in presence of peroxymonosulfate among which C800-3 owned the best catalytic performance. For the degradation mechanism, the dominant role of electron transfer pathway was gradually replaced by the SO4 center dot- pathway with the increase of iron amount and the destruction of graphitized carbon layers. This work would provide a simple and feasible method, namely changing the ratio of potassium ferrate and biochar, to manipulate the radical and nonradical degradation pathway in PMS-based organic wastewater purification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据