4.7 Article

Optimized Photo-Fenton degradation of psychoactive pharmaceuticals alprazolam and diazepam using a chemometric approach-Structure and toxicity of transformation products

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 403, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.123819

关键词

Benzodiazepines; Psychoactive; Pharmaceuticals; Photo-Fenton; Central composite design; Transformation products; LC-MS/MS

向作者/读者索取更多资源

The study aimed to evaluate the photocatalytic degradation of two benzodiazepine pharmaceuticals using Photo-Fenton, optimize experimental parameters through central composite experimental design, assess mineralization and toxicity variations, and identify transformation products and propose pathways.
The objectives of the present study were: a) to evaluate the photocatalytic degradation of two benzodiazepine pharmaceuticals, alprazolam and diazepam, using Photo-Fenton, b) to optimize the experimental parameters through a central composite experimental design, c) to assess their mineralization and toxicity variations and d) to identify the transformation products during the process and to propose transformation pathways. Response Surface Methodology proved to be a useful tool for the optimization of the degradation process as the statistical coefficients (R-2 = 0.967 for alprazolam and R-2 = 0.929 for diazepam) showed satisfactory values confirming the adequate correlation between the predicted models and experimental values. Two sets of experimental conditions were proposed taking into consideration criteria related to the reaction rate and the minimum use of iron. Toxicity of the system varied with time after the treatment, indicating the gradual production of transformation products which differ in their toxic potential. Fifteen and twenty-three photocatalytic degradation products were identified for ALP and DZP respectively using LC-(ESI)MS/MS. In the case of ALP, the main degradation reactions included, phenyl-group removal and the opening of the 7-membered ring, while for DZP, degradation occurred through hydroxylation, formation of benzophenone and the opening of the 7-membered cyclic group.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据