4.7 Article

Competing Marangoni and Rayleigh convection in evaporating binary droplets

期刊

JOURNAL OF FLUID MECHANICS
卷 914, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2020.734

关键词

Marangoni convection; buoyancy-driven instability; drops

资金

  1. Canon Production Printing Holding B.V.
  2. University of Twente
  3. Eindhoven University of Technology
  4. ERC-Advanced Grant DDD [740479]

向作者/读者索取更多资源

Recent studies have shown that in evaporating binary sessile and pendant droplets, gravity and natural convection can be the dominant driving mechanisms for flow. A quasi-stationary model has been derived and validated to predict the prevalence and intriguing interaction of Rayleigh and/or Marangoni convection based on a phase diagram for the flow field expressed in terms of the Rayleigh and Marangoni numbers.
For a small sessile or pendant droplet it is generally assumed that gravity does not play any role once the Bond number is small. This is even assumed for evaporating binary sessile or pendant droplets, in which convective flows can be driven due to selective evaporation of one component and the resulting concentration and thus surface tension differences at the air-liquid interface. However, recent studies have shown that in such droplets gravity indeed can play a role and that natural convection can be the dominant driving mechanism for the flow inside evaporating binary droplets (Edwards et al., Phys. Rev. Lett., vol. 121, 2018, 184501; Li et al., Phys. Rev. Lett., vol. 122, 2019, 114501). In this study, we derive and validate a quasi-stationary model for the flow inside evaporating binary sessile and pendant droplets, which successfully allows one to predict the prevalence and the intriguing interaction of Rayleigh and/or Marangoni convection on the basis of a phase diagram for the flow field expressed in terms of the Rayleigh and Marangoni numbers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据