4.7 Article

Effect of surfactant on the settling of a drop towards a wall

期刊

JOURNAL OF FLUID MECHANICS
卷 912, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2020.1101

关键词

drops

资金

  1. Department of Science and Technology (DST) [CRG/2019/000241]

向作者/读者索取更多资源

The study investigates the effect of surfactants on drop settling dynamics, finding that surfactants can alter the settling speed and deformation of the drops, with the most significant effects near the solid wall.
Sedimentation of drops has been widely investigated, although a relatively small number of studies have accounted for the presence of a bounding wall, presumably because of the associated analytical difficulties. In addition, these drops almost always contain impurities in the form of surfactants, which alter the interfacial properties, thereby changing the flow characteristics and the settling dynamics. Therefore, a more physically accurate description of settling should account for both the presence of a bounding wall as well as surfactants, a paradigm that remains poorly addressed. As such, here we analyse the effect of surfactants on a drop settling towards a solid wall in the limit of small deformation. We only account for the interfacial transport of the surface impurities and use bipolar coordinates to represent the fluid motion. Assuming the surfactant transport to be diffusion dominated, asymptotic solutions for the velocity field are derived and are subsequently used to analyse the settling dynamics and deformation of the drop. We show that the surfactants slow down the drop and may either augment or reduce the deformation by a small amount depending on the location of the drop. The effect of surfactant becomes most prominent near the wall, wherein the drop experiences the largest hydrodynamic drag. The changing flow patterns caused by the wall also redistributes the surfactant around the interface, resulting in asymmetric depletion and accumulation near the poles. Our results might have potential significance in areas such as separation processes as well as droplet based microfluidics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据