4.7 Article

Rumen biohydrogenation and milk fatty acid profile in dairy ewes divergent for feed efficiency

期刊

JOURNAL OF DAIRY SCIENCE
卷 104, 期 5, 页码 5569-5582

出版社

ELSEVIER SCIENCE INC
DOI: 10.3168/jds.2020-19061

关键词

biomarker; feed efficiency index; lipid; residual feed intake; sheep

资金

  1. Junta de Castilla y Leon (JCyL, Spain) [CSI276P18]
  2. Ramon y Cajal research contract from the Spanish Ministry of Economy and Competitiveness (MINECO) [RYC-2015-17230]
  3. JCyL
  4. European Regional Development Fund (ERDF/FEDER)
  5. European Social Fund (ESF)

向作者/读者索取更多资源

This study conducted in lactating ewes showed that high-efficiency animals had higher milk yield, with increased fat and protein production. Analysis of rumen and milk fatty acid composition suggested that high-efficiency ewes had higher de novo fat synthesis and lower proportions of certain fatty acids in milk. Further research is needed to confirm these findings under different dietary conditions.
A sustainable increase in livestock production would require selection for improved feed efficiency, but the mechanisms underlying this trait and explaining its large individual variation in dairy ruminants remain unclear. This study was conducted in lactating ewes to test the hypothesis that rumen biohydrogenation (BH) would differ between high- and low-efficiency animals, and these differences would be reflected in rumen fatty acid (FA) profile and affect milk FA composition. A second aim was to identify differences in FA that may serve as biomarkers of feed efficiency. Data of daily feed intake and milk yield and composition, as well as body weight, were collected individually over a 3-wk period in 40 ewes. The difference between the mean actual and predicted feed intake (estimated through metabolizable energy requirements for maintenance, production, and body weight change) over the period was used as the feed efficiency index (FEI) to select 8 of the highest feed efficiency (H-FE) and 8 of the lowest feed efficiency (L-FE) animals. In addition, residual feed intake (RFI) was estimated as the residual term from the regression of feed intake on various energy sinks. Rumen and milk FA composition were characterized by using gas chromatography, and results were analyzed using a statistical model that included the fixed effect of the group (H-FE vs. L-FE). The FEI averaged -0.29 +/- 0.046 and 0.81 +/- 0.084 in H-FE and L-FE, respectively, whereas RFI averaged -0.16 +/- 0.084 and 0.18 +/- 0.082, respectively. The correlation coefficient between both metrics was 0.69. Feed intake was similar in both groups, but H-FE showed greater milk yield, with increases in lactose content and yield, and in milk protein and fat production. Results from rumen FA profiles included a lower proportion of 18:2n-6, cis-9 18:1, and of several of their BH metabolites, and a greater concentration of 18:0, which may indicate that the apparent BH would be more complete in more efficient sheep. Milk FA analysis suggested that the greater fat yield in the H-FE group was mostly explained by increased de novo FA synthesis, whereas their milk would have lower proportions of cis-9 18:1 and C20 to 22n-6 polyunsaturated FA than L-FE. Stepwise multiple linear regression suggested that milk C20 to 22n-6 PUFA might be convenient biomarkers to discriminate more efficient dairy sheep. Further research is needed to validate these findings (e.g., under different dietary conditions).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据