4.7 Article

Fouling of polyelectrolyte multilayer based nanofiltration membranes during produced water treatment: The role of surfactant size and chemistry

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 594, 期 -, 页码 9-19

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2021.02.119

关键词

NF; Produced water; PEM-based membranes; Fouling; Surfactants

资金

  1. Dutch Ministry of Economic Affairs
  2. European Union Regional Development Fund
  3. Province of Fryslan
  4. European Union's Horizon 2020 research and innovation programme under the Marie SklodowskaCurie grant [665874]
  5. research theme Concentrates
  6. Ministry of Infrastructure and Environment

向作者/读者索取更多资源

Large volumes of water become contaminated with various chemical agents during Oil & Gas exploration activities, resulting in a complex wastewater stream known as produced water (PW). Nanofiltration (NF) membranes are a promising alternative for the treatment of PW to facilitate its re-use, but membrane fouling remains a major obstacle. The study found that fouling of PEM-based NF membranes during the treatment of artificial produced water is mainly caused by surfactant uptake inside of the PEM coating.
Large volumes of water become contaminated with hydrocarbons, surfactants, salts and other chemical agents during Oil & Gas exploration activities, resulting in a complex wastewater stream known as produced water (PW). Nanofiltration (NF) membranes are a promising alternative for the treatment of PW to facilitate its re-use. Unfortunately, membrane fouling still represents a major obstacle. In the present work, we investigate the effect of surface chemistry on fouling of NF membranes based on polyelectrolyte multilayers (PEM), during the treatment of artificial produced water. To this end, oil-in-water (O/W) emulsions stabilized with four different surfactants (anionic, cationic, zwitterionic and non-ionic) were treated with PEM-based NF membranes having the same multilayer, but different top layer polymer chemistry: crosslinked poly(allylamine hydrochloride) (PAH, nearly uncharged), poly(sodium 4-styrene sulfonate) (PSS, strongly negative), poly(sulfobetaine methacrylate-co-acrylic acid) (PSBMA-co-AA, zwitterionic) and Nafion (negative and hydrophobic). First, we study the adsorption of the four surfactants for the four different surfaces on model interfaces. Second, we study fouling by artificial produced water stabilized by the same surfactants on PEM-based hollow fiber NF membranes characterized by the same multilayer of our model surfaces. Third, we study fouling of the same surfactants solution but without oil. Very high oil retention (>99%) was observed when filtering all the O/W emulsions, while the physicochemical interactions between the multilayer and the surfactants determined the extent of fouling as well as the surfactant retention. Unexpectedly, our results show that fouling of PEM-based NF membranes, during PW treatment, is mainly due to membrane active layer fouling caused by surfactant uptake inside of the PEM coating, rather than due to cake layer formation. Indeed, it is not the surface chemistry of the membrane that determines the extent of fouling, but the surfactant interaction with the bulk of the PEM. A denser multilayer, that would stop these molecules, would benefit PW treatment by decreasing fouling issues, as would the use of slightly more bulky surfactants that cannot penetrate the PEM. (c) 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据