4.7 Review

Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy

期刊

JOURNAL OF CLEANER PRODUCTION
卷 297, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2021.126645

关键词

Biomass feedstocks; Pyrolysis mechanisms; Carbon sequestration; Biochar properties; Agronomic applications

资金

  1. Dongguk University-Seoul, South Korea
  2. Deanship of Scientific Research, King Saud University [RG-1440-056]

向作者/读者索取更多资源

Biochar is a solid carbon-rich material produced by thermochemical conversion of biomass under an inert atmosphere. It can be produced at different scales and used in various fields such as soil amendment and agricultural sustainability. The sustainable production practices and multi-functionality make biochar a promising candidate.
The biochar is a solid carbon-rich, porous material produced by the thermochemical conversion of a diverse range of biomass feedstocks under an inert atmosphere (i.e., in the absence of oxygen). We can produce the biochar at all likely scales, ranging from the industrial to the domestic level and even at individual farms, thus, the biochar industry is leading as a most appropriate at different socioeconomic settings. The possibility of sustainable biochar production practices and multi-functionality features make it a promising candidate to fulfill an increasing demand in the fields of soil amendment, agricultural sustainability, environmental protection, cutting-edge materials, and to achieve circular bio-economy and mitigation of climate change. An available fraction of waste biomass (agroforestry waste, biomass crops, agricultural residues, mill residues, and animal manure, and many more) can be used efficiently in pyrolysis and converted into desired biochar materials, besides this alternative energy products, such as syngas, bio-oil, electricity generation, and process heat. This report emphasizes the fate of biomass composition, pyrolysis mechanisms, and applications of modern analytical and characterization techniques that are being adopted, applied, and standardized to improve understandings of molecular, structural, and surface properties characteristics of biochar. To achieve precisely designed biochar, there is a need to understand the latest advances in biochar materialization mechanisms and structure-application relationships to speed up their agronomic applications and to achieve a zero-waste dream. This report also summarizes a wide range of literature published on feedstocks, pyrolysis, and biochar and suggests several practical recommendations appropriate to implement and bring together specific details on the thermochemical conversion of biomass, desired biochar properties, organic and inorganic phases, and the significance to the agronomic applications. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据