4.7 Article

Substitution of beef with pea protein reduces the environmental footprint of meat balls whilst supporting health and climate stabilisation goals

期刊

JOURNAL OF CLEANER PRODUCTION
卷 297, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2021.126447

关键词

Life-cycle assessment; Dietary behaviour; Health impacts; Carbon footprint; Carbon opportunity cost; Sustainable products

资金

  1. TRUE project - EU Framework Programme for Research and Innovation H2020 [727973]
  2. FCT [UID/Multi/50016/2019]

向作者/读者索取更多资源

The study found that plant-based meat analogues made from peas have lower environmental burdens in production and consumption compared to traditional beef products, with global warming, acidification, and land use burdens at least 85%, 81%, and 89% smaller, respectively. Additionally, PPBs have higher nutritional density, resulting in considerably lower environmental footprints per unit of nutrition.
Recent environmental footprint comparisons between meat and plant-based meat analogues do not consider nutritional density holistically, nor the high carbon opportunity costs (COC) of land requirements, which are critical in terms of climate stabilisation targets. We performed an attributional life cycle assessment (LCA) of a 100 g serving of cooked protein balls (PPBs) made from peas (Pisum sativum), and Swedish-style beef meatballs (MBs) made from Irish or Brazilian beef. Per serving, PPB production and consumption was associated with lower environmental burdens across all 16 categories assessed. Global warming, acidification, and land use burdens of PPBs were at least 85%, 81%, and 89% smaller, respectively, than MBs. The scale of environmental advantage was sensitive to the allocation method, with biophysical allocation across cattle co-products decreasing MB burdens by at least 35%, 38%, and 46% in the acidification, climate change, and land use categories, respectively. Furthermore, PPBs have a higher nutritional density than MBs, and hence their environmental footprint per unit of nutrition was considerably lower across all 16 impact categories. Per Nutrient Density Unit, global warming, acidification, and land use burdens of PPBs were at least 89%, 87%, and 93% smaller, respectively, than MBs. Results were tested with Monte Carlo simulations and a modified null hypothesis significance test, which supported the main findings. Finally, when COC of land was factored in, the climate advantage of PPBs extended greatly. Assuming MBs equivalent to just 5% of German beef consumption are replaced by PPBs, total carbon savings including COC could amount to 8 million tonnes CO(2)e annually, an amount equal to 1% of Germany's annual GHG emissions. Therefore, this study highlights the potential of PPBs to meet health and climate neutrality objectives. Crown Copyright (C) 2021 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据