4.7 Article

Impact of dimerization and N3 binding on molecular dynamics of SARS-CoV and SARS-CoV-2 main proteases

期刊

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS
卷 40, 期 14, 页码 6243-6254

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2021.1880481

关键词

Allostery; Covid-19; dimerization; eigenvector centrality; linear mutual information; main protease (3C-like protease); molecular dynamics; N3; SARS-CoV; SARS-CoV-2

资金

  1. Investissement d'Avenir grant [ANR-16-CONV-0005]
  2. Programme PAUSE of College de France
  3. Agence Nationale de la Recherche (ANR) [ANR-16-CONV-0005] Funding Source: Agence Nationale de la Recherche (ANR)

向作者/读者索取更多资源

Researchers conducted molecular dynamics simulations on SARS-CoV and SARS-CoV-2 main proteases and found that dimerization causes local structural changes and ligand binding induces key local changes in the dimeric forms. They also suggested that only one protomer is active in SARS-CoV-2 due to an allosteric interaction between the active sites.
SARS-CoV-2 main protease is one of the major targets in drug development efforts against Covid-19. Even though several structures were reported to date, its dynamics is not understood well. In particular, impact of dimerization and ligand binding on the dynamics is an important issue to investigate. In this study, we performed molecular dynamics simulations of SARS-CoV and SARS-CoV-2 main proteases to investigate influence of dimerization on the dynamics by modeling monomeric and dimeric apo and holo forms. The dimerization causes an organization of the interdomain dynamics as well as some local structural changes. Moreover, we investigated impact of a peptide mimetic (N3) on the dynamics of SARS-CoV and SARS-CoV-2 Mpro. The ligand binding to the dimeric forms causes some key local changes at the dimer interface and it causes an allosteric interaction between the active sites of two protomers. Our results support the idea that only one protomer is active on SARS-CoV-2 due to this allosteric interaction. Additionally, we analyzed the molecular dynamics trajectories from graph theoretical perspective and found that the most influential residues - as measured by eigenvector centrality - are a group of residues in active site and dimeric interface of the protease. This study may form a bridge between what we know about the dynamics of SARS-CoV and SARS-CoV-2 Mpro. We think that enlightening allosteric communication of the active sites and the role of dimerization in SARS-CoV-2 Mpro can contribute to development of novel drugs against this global health problem as well as other similar proteases. Communicated by Ramaswamy H. Sarma

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据