4.5 Article

Numerical-experimental analysis of the permeability-porosity relationship in triply periodic minimal surfaces scaffolds

期刊

JOURNAL OF BIOMECHANICS
卷 117, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2021.110263

关键词

Bone tissue engineering; Scaffolds; Permeability; Triply periodic minimal surfaces; Computational fluid dynamics

资金

  1. Portuguese Science and Technology Foundation, through IDMEC, under LAETA [UIDB/50022/2020, PTDC/BBB-BMC/5655/2014]
  2. Fundação para a Ciência e a Tecnologia [PTDC/BBB-BMC/5655/2014] Funding Source: FCT

向作者/读者索取更多资源

Experimental and computational analysis were used to assess the permeability and fluid streamlines within different scaffold geometries, with Gyroid structures being most suitable for bone tissue engineering applications, while Schwarz P structures were found to provide a poor environment for cell seeding and proliferation.
Bone Tissue Engineering has been focusing on improving the current methods for bone repair, being the use of scaffolds presented as an upgrade to traditional surgery techniques. Scaffolds are artificially porous matrices, meant to promote cell seeding and proliferation, being these properties influenced by the permeability of the structure. This work employed experimental pressure drop tests and Computational Fluid Dynamics models to assess permeability (and fluid streamlines) within different triply periodic minimal surfaces scaffold geometries (Schwarz D, Gyroid and Schwarz P). The pressure outputs from the computational analysis presented a good correlation with the experimental results, with R2 equal to 0.903; they have also shown that a lower porosity may not mean a lower permeability if the geometry is altered, such as the difference between 60% porous Gyroid scaffolds (8.1*10-9 mm2) and 70% porous Schwarz D scaffolds (7.1*10-9 mm2). Fluid streamlines revealed how the Gyroid geometries are the most appropriate design for most bone tissue engineering applications, due to their consistent fluid permeation, followed by Schwarz D. The Schwarz P geometries have shown flat streamlines and significant variation of the permeability with the porosity (an increase of 10% in their porosity lead to an increase in the permeability from 5.1*10-9 mm2 to 11.7*10-9 mm2), which would imply a poor environment for cell seeding and proliferation. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据