4.7 Article

In-situ growth of Co3O4 nanoparticles based on electrospray for an acetone gas sensor

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 854, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2020.157234

关键词

Gas sensor; Electrospray; Nanoparticles; Co3O4; Acetone

资金

  1. Zhejiang Provincial Natural Science Foundation [LQ20F010001]
  2. Scientific Research Project of Education Department of Zhejiang Province [Y201839153]

向作者/读者索取更多资源

In this study, Co3O4 nanoparticles were prepared by the electrospray method and used to fabricate an acetone gas sensor. The nanoparticles showed excellent sensitivity to acetone and were able to detect sub-ppm levels of acetone at an optimum working temperature of 200 degrees Celsius.
In this study, Co3O4 nanoparticles were prepared using the electrospray method and were then deposited in-situ on a substrate to fabricate an acetone gas sensor. The physicochemical properties of the samples were investigated using scanning electron spectroscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The growth of the Co3O4 nanoparticles was confirmed by SEM. The Co3O4 nanoparticles showed the spinel structure, as revealed by the XRD results. The chemical composition of the prepared material and the chemical states of Co and O were investigated using XPS. The gas sensing properties of the electrosprayed Co3O4 nanoparticles were analyzed. The nanomaterials exhibited excellent acetone sensitivity. At the optimum working temperature of 200 degrees C, the response to 100 ppm acetone was 8.61, and the response and recovery times were 43 and 92 s, respectively. Moreover, sub-ppm acetone could be detected by the sensor. The Co3O4 nanoparticle-based sensor showed excellent sensitivity to acetone in the presence of methanol, ethanol, isopropanol, benzene, and ethyl acetate. The sensor showed a relative standard deviation of response of approximately 3.893% -100 ppm acetone over 10 days in the atmospheric environment. The acetone-sensing mechanism of the electrosprayed Co3O4 film was also investigated. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据