4.7 Article

Dynamic fracture behavior of Zr63Cu12Ni12Al10Nb3 metallic glass under high strain-rate loading

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 853, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2020.157110

关键词

Bulk metallic glass; High strain-rate; Ductile fracture; Void formation; Decohesion stress

向作者/读者索取更多资源

The fracture behavior of a Zr-based bulk metallic glass under different loading conditions was investigated, revealing the evolution of shear bands and voids and their impact on the fracture mode. The study showed the transition from shear banding to void coalescence under planar impact loading due to the increase in decohesion strength.
We investigate the fracture behavior of a Zr-based bulk metallic glass, Zr63Cu12Ni12Al10Nb3, subjected to quasi-static compression, dynamic compression and flyer-plate impact experiments. The metallic glasses yield once the stress reaches the critical value and subsequently premature fracture occurs in a brittle manner through shear bands expanding rapidly under uniaxial stress loading, leaving vein patterns, some of which evolves into dendrite-like patterns due to the increase of strain rate. For uniaxial strain loading, the equivalent stress is lower than critical stress and shear bands are suppressed. The fracture mechanisms are nucleation and coalescence of voids rather than shear bands evolution, exhibiting the typical fractography of ductile fracture with microvoids, dimples and cup-cone structures. Compared with quasi-static and dynamic compression, higher impact stress induced the reduction of available free volume under planar impact loading. In such a case, decohesion strength, as a key parameter which characters ductile fracture, becomes higher, resulting in change from shear banding to void coalescence under planar impact loading. (c) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据