4.7 Article

Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning

期刊

出版社

ELSEVIER
DOI: 10.1016/j.isprsjprs.2020.11.008

关键词

Polarimetric synthetic aperture radar (PolSAR); LiDAR; L-band; Forest height; Machine learning

资金

  1. Engineering and Physical Science Research Council (EPSRC) [EP/M508081/1]

向作者/读者索取更多资源

This study investigates the potential of combining PolSAR variables with LiDAR measurements for forest height estimation using machine learning algorithms. Different subsets with various features are identified to train the algorithms, and the results show high accuracy in estimating forest canopy height with the combination of Po1SAR parameters and a small coverage of LiDAR height as training data.
Forest height is an important forest biophysical parameter which is used to derive important information about forest ecosystems, such as forest above ground biomass. In this paper, the potential of combining Polarimetric Synthetic Aperture Radar (PolSAR) variables with LiDAR measurements for forest height estimation is investigated. This will be conducted using different machine learning algorithms including Random Forest (RFs), Rotation Forest (RoFs), Canonical Correlation Forest (CCFs) and Support Vector Machine (SVMs). Various PolSAR parameters are required as input variables to ensure a successful height retrieval across different forest heights ranges. The algorithms are trained with 5000 LiDAR samples (less than 1% of the full scene) and different polarimetric variables. To examine the dependency of the algorithm on input training samples, three different subsets are identified which each includes different features: subset 1 is quiet diverse and includes non-vegetated region, short/sparse vegetation (0-20 m), vegetation with mid-range height (20-40 m) to tall/dense ones (40-60 m); subset 2 covers mostly the dense vegetated area with height ranges 40-60 m; and subset 3 mostly covers the non-vegetated to short/sparse vegetation (0-20 m) .The trained algorithms were used to estimate the height for the areas outside the identified subset. The results were validated with independent samples of LiDAR-derived height showing high accuracy (with the average R-2 = 0.70 and RMSE = 10 m between all the algorithms and different training samples). The results confirm that it is possible to estimate forest canopy height using Po1SAR parameters together with a small coverage of LiDAR height as training data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据