4.6 Article

Numerical implementation of a non-local GTN model for explicit FE simulation of ductile damage and fracture

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2021.03.007

关键词

Non-local; Strain localization; Ductile crack initiation and propagation; Gurson-Tvergaard-Needleman model

资金

  1. Centre of Advanced Structural Analysis (CASA)
  2. Centre for Research-based Innovation, at the Norwegian University of Science and Technology (NTNU)
  3. Research Council of Norway [237885]

向作者/读者索取更多资源

This study presents the numerical implementation and initial applications of a non-local Gurson-Tvergaard-Needleman (GTN) model for explicit finite element analysis, discussing the effect of the material characteristic length on ductile damage and fracture behavior and on the mesh sensitivity of the results. The study shows that simulation results obtained in all stages of the ductile fracture process are mesh independent for a certain mesh size ratio related to the material characteristic length when the non-local integral is evaluated on the current configuration.
In this study, we follow the work of Tvergaard and Needleman (1995, 1997) and Needleman and Tvergaard (1998) and present the numerical implementation and initial applications of a non-local Gurson-Tvergaard-Needleman (GTN) model for explicit finite element (FE) analysis. The delocalization relates to the damage mechanism and is incorporated in terms of an integral condition on the rate of change of the porosity. To demonstrate the mesh independence during all stages of ductile damage and fracture, several material test specimens were simulated using different mesh sizes until full fracture occurred. For comparison purposes, the results are also obtained for the corresponding local GTN model in all cases. The effect of the material characteristic length on the ductile damage and fracture behavior and on the mesh sensitivity of the results is discussed. The numerical study shows that simulation results obtained in all stages of the ductile fracture process, including void growth, fracture initiation by coalescence and crack propagation all the way to a fully fractured specimen, are mesh independent for a certain mesh size ratio related to the material characteristic length, provided the non-local integral is evaluated on the current configuration. This ratio is unique for each individually simulated specimen as it depends on the spatial gradients of the porosity and the material parameters adopted for the problem at hand. It is shown that excessive averaging occurs at large deformations if the non-local integral is evaluated on the reference configuration, i.e., without updating the element interaction matrix resulting from the discretization of the non-local integral. (C) 2021 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据