4.7 Article

Hyaluronic Acid Conjugated Metformin-Phospholipid Sonocomplex: A Biphasic Complexation Approach to Correct Hypoxic Tumour Microenvironment

期刊

INTERNATIONAL JOURNAL OF NANOMEDICINE
卷 16, 期 -, 页码 1005-1019

出版社

DOVE MEDICAL PRESS LTD
DOI: 10.2147/IJN.S297634

关键词

metformin; pancreatic ductal adenocarcinoma; hypoxia-inducible factor; MiaPaCa-2; hyaluronic acid

向作者/读者索取更多资源

The study developed hyaluronic acid conjugated metformin-phospholipid sonocomplexes with enhanced targeting potential to CD44 receptors on pancreatic cancer cells. Through a series of experiments and tests, the optimized complex showed advantages in intracellular uptake, oxygen consumption rate, hypoxia-inducible factor, and reactive oxygen species reduction.
Purpose: Development of hyaluronic acid conjugated metformin-phospholipid sonocomplexes (HA-MPS), a biphasic complexation product compiled for enhancing both the lipophilicity and targeting potential of Metformin (MET) to CD44 receptors on pancreatic cancer. Methods: MET was chemically conjugated to hyaluronic acid (HA) via amide coupling reaction. Then, the HA conjugated MET was physically conjugated to Lipoid (TM) S100 via ultrasound irradiation. A combined D-optimal design was implemented to statistically optimize formulation variables. The HA-MPS were characterized through solubility studies, partition coefficient, drug content uniformity, particle size and zeta potential. The optimized HA-MPS was tested via proton nuclear magnetic resonance, infrared spectroscopy to elucidate the nature of physicochemical interactions in the complex which was further scrutinized on molecular level via molecular docking and dynamic simulation. Results: The solubility and partition studies showed a lipophilicity enhancement up to 67 folds as they adopted inverted micelles configuration based on the packing parameter hypothesis. The optimized HA-MPS showed 11.5 folds lower IC50, extra 25% reduction in oxygen consumption rate, better reduction in hypoxia-inducible factor and reactive oxygen species in MiaPaCa-2 cells. Conclusion: These results proved better internalization of MET which was reflected by abolishing hypoxic tumour microenvironment, a mainstay toward a normoxic and less resistant pancreatic cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据