4.8 Article

Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 9, 期 5, 页码 1655-1660

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ee00409a

关键词

-

资金

  1. Engineering and Physical Sciences Research Council (EPSRC) [EP/M023532/1, EP/K010298/1]
  2. European Community [308997]
  3. EPSRC [EP/M023532/1, EP/IO19278/1]
  4. Welsh Assembly government
  5. EPSRC [EP/K010298/1, EP/K030671/1] Funding Source: UKRI
  6. Engineering and Physical Sciences Research Council [EP/K030671/1, EP/K010298/1, 1565500, 1231067, EP/M023532/1, 2050414] Funding Source: researchfish

向作者/读者索取更多资源

Here, we demonstrate that light and oxygen-induced degradation is the main reason for the low operational stability of methylammonium lead triiodide (MeNH3PbI3) perovskite solar cells exposed to ambient conditions. When exposed to both light and dry air, unencapsulated MeNH3PbI3 solar cells rapidly degrade on timescales of minutes to a few hours. This rapid degradation is also observed under electrically bias driven current flow in the dark in the presence of O-2. In contrast, significantly slower degradation is observed when the MeNH3PbI3 devices are exposed to moisture alone (e.g. 85% relative humidity in N-2). We show that this light and oxygen induced degradation can be slowed down by the use of interlayers that are able to remove electrons from the perovskite film before they can react with oxygen to form O-2(-). These observations demonstrate that the operational stability of electronic and optoelectronic devices that exploit the electron transporting properties of MeNH3PbI3 will be critically dependent upon the use of suitable barrier layers and device configurations to mitigate the oxygen sensitivity of this remarkable material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据