4.7 Article

Functional Characterization of Antithrombin Mutations by Monitoring of Thrombin Inhibition Kinetics

期刊

出版社

MDPI
DOI: 10.3390/ijms22042119

关键词

thrombin; antithrombin deficiency; SERPINC1 gene; coagulation inhibition

向作者/读者索取更多资源

The study investigated the impact of AT mutations on thrombin inhibition kinetics, finding that patients with AT mutations had significantly prolonged plasma half-life of thrombin. Interestingly, compared with controls, patients with AT mutations had higher AT levels in plasma despite reaching a comparable thrombin half-life.
Inactivation of thrombin by the endogenous inhibitor antithrombin (AT) is a central mechanism in the regulation of hemostasis. This makes hereditary AT deficiency, which is caused by SERPINC1 gene mutations, a major thrombophilic risk factor. Aim of this study was to assess to what extent AT mutations impair thrombin inhibition kinetics. The study population included 36 thrombophilic patients with 19 different mutations and mean AT levels of 65% in a thrombin-based functional assay, and 26 healthy controls. To assess thrombin inhibition kinetics, thrombin (3.94 mU/mL final concentration) was added to citrated plasma. Subsequently, endogenous thrombin inhibition was stopped by addition of the reversible thrombin inhibitor argatroban and the amount of argatroban-complexed thrombin quantified using an oligonucleotide-based enzyme capture assay. The plasma half-life of human thrombin was significantly longer in patients with AT mutations than in the controls (119.9 versus 55.9 s). Moreover, it was disproportionately prolonged when compared with preparations of wild type AT in plasma, in whom a comparable thrombin half-life of 120.8 s was reached at a distinctly lower AT level of 20%. These findings may help to better understand the increased thrombotic risk of SERPINC1 mutations with near normal AT plasma levels in functional assays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据