4.7 Article

A Potential Quorum-Sensing Inhibitor for Bronchiectasis Therapy: Quercetin-Chitosan Nanoparticle Complex Exhibiting Superior Inhibition of Biofilm Formation and Swimming Motility of Pseudomonas aeruginosa to the Native Quercetin

期刊

出版社

MDPI
DOI: 10.3390/ijms22041541

关键词

quercetin nanoparticles; drug-polyelectrolyte complexation; amorphous drugs; quorum sensing; bronchiectasis therapy; Pseudomonas biofilm

资金

  1. LKCMedicine-SCBE Collaborative Research Grant [CG-04/16]
  2. Nanyang Technological University Singapore

向作者/读者索取更多资源

The study developed a chitosan nanoplex to enhance the solubility of quercetin in physiological fluids, while preserving its bioactivity, showing significant inhibitory effects on Pseudomonas aeruginosa biofilm formation and swimming motility.
Quercetin (QUE)-a plant-derived flavonoid, is recently established as an effective quorum sensing (QS) inhibiting agent in Pseudomonas aeruginosa-the main bacterial pathogen in bronchiectasis lungs. Successful clinical application of QUE, however, is hindered by its low solubility in physiological fluids. Herein we developed a solubility enhancement strategy of QUE in the form of a stable amorphous nanoparticle complex (nanoplex) of QUE and chitosan (CHI), which was prepared by electrostatically driven complexation between ionized QUE molecules and oppositely charged CHI. At its optimal preparation condition, the QUE-CHI nanoplex exhibited a size of roughly 150 nm with a 25% QUE payload and 60% complexation efficiency. The complexation with CHI had no adverse effect on the antibacterial and anticancer activities of QUE, signifying the preservation of QUE's bioactivities in the nanoplex. Compared to the native QUE, the QUE-CHI nanoplex exhibited superior QS inhibition in suppressing the QS-regulated swimming motility and biofilm formation of P. aeruginosa, but not in suppressing the virulence factor production. The superior inhibitions of the biofilm formation and swimming motility afforded by the nanoplex were attributed to (1) its higher kinetic solubility (5-times higher) that led to higher QUE exposures, and (2) the synergistic QS inhibition attributed to its CHI fraction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据