4.7 Article

Experimental analysis of a metal hydride hydrogen storage system with hexagonal honeycomb-based heat transfer enhancements-part B

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 46, 期 24, 页码 13131-13141

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2020.11.275

关键词

Hydrogen storage; Hydrogen reactor; Metal hydrides

资金

  1. IITB-ISRO Space Technology Cell (STC) [16ISROC001]

向作者/读者索取更多资源

This study continues the computational analysis of a reactor with hexagonal honeycomb-based heat transfer enhancements, investigating the performance of a metal alloy and the reactor experimentally. It determines the gravimetric capacity and reaction kinetics of the alloy La0.9Ce0.1Ni5, while also exploring the impact of operating conditions on reactor performance. Additionally, evaporative cooling is tested for the first time as a heat removal technique for metal hydride based hydrogen storage reactors and found to significantly improve heat transfer.
This study is a continuation of the computational analysis of the reactor equipped with hexagonal honeycomb based heat transfer enhancements, performed in Part A of the study. In the present study, the performance of the metal alloy and the reactor is investigated experimentally. The gravimetric capacity and reaction kinetics of the alloy La0.9Ce0.1Ni5 are determined. The performance of the reactor under different external environments is noted. The influence of operating conditions such as supply pressure, heat transfer fluid, heat transfer fluid temperature on the reactor performance is investigated. Evaporative cooling as a heat removal technique for metal hydride based hydrogen storage reactors is tested for the first time and compared to conventional heat removal methods. It is found to improve the heat transfer from the alloy bed significantly. ? 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据