4.7 Article

Effect of injection timing on mixture formation and combustion in an ethanol direct injection plus gasoline port injection (EDI plus GPI) engine

期刊

ENERGY
卷 111, 期 -, 页码 92-103

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2016.05.109

关键词

Ethanol direct injection; Gasoline port injection; Dual-fuelled; Numerical modelling; Injection timing

资金

  1. China Scholarship Council (CSC)

向作者/读者索取更多资源

Ethanol direct injection plus gasoline port injection (EDI+GPI) is a new technology to utilise ethanol fuel more effectively and efficiently in spark-ignition engines by taking the advantages of ethanol fuel and direct injection, such as the cooling effect and anti-knock ability. A full cycle numerical modelling including both port and direct injection sprays was performed to understand the mechanisms behind the experimental results of the EDI+GPI engine. The turbulence-chemistry interaction of the two-fraction mixture partially premixed combustion was solved by a five-dimensional presumed Probability Density Function table. Effects of direct injection timing on fuel evaporation, mixing, wall-wetting, combustion and emission processes were investigated. The results showed that when the direct injection timing was retarded, the mixture around the spark plug became leaner and the distribution of equivalence ratio became more uneven. Moreover, late direct injection resulted, in severe fuel impingement and caused local over-cooling effect and over-rich mixture. Consequently, the combustion speed and temperature were decreased by retarded direct injection timing, leading to reduced NO emission and increased HC and CO emissions. Finally, numerical modelling was performed to investigate the strategy of injecting small amount of ethanol fuel on reducing the fuel impingement and incomplete combustion caused by late direct injection. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据