4.7 Article

Thermal conductivity, viscosity and stability of Al2O3-diathermic oil nanofluids for solar energy systems

期刊

ENERGY
卷 95, 期 -, 页码 124-136

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2015.11.032

关键词

Solar energy system; Nanofluids; Stability; Thermal conductivity; Diathermic oil

资金

  1. SOLAR project [DM19447]
  2. Italian Ministry of University and Research (MIUR)

向作者/读者索取更多资源

Nanofluids have excellent potentiality in the field of heat transfer fluids and particularly for solar energy systems such as concentrated solar power plants. However they present many issues to be fixed in order to have a large diffusion. One of these is sedimentation. In this paper, stability, viscosity, FT-IR spectra, cluster size and thermal conductivity of Al2O3 - Therminol nanofluids have been investigated as heat transfer fluid in high temperature solar energy systems. Al2O3 - Therminol nanofluids have been prepared to investigate and to improve stability of the suspensions, varying temperature during mixing with magnetic stirrer, amount of surfactant and sonication time with ultrasonic vibrator. Stability of the nanofluid samples was investigated through back scattering technique and for cluster size analysis Dynamic Light Scattering (DLS) was used. Thermal conductivity of the sample was measured in order to evaluate not only the effect of both volume fraction and temperature, but also the influence of the surfactant (oleic acid). Stability of nanofluids depends on temperature during sample preparation and sedimentation phenomenon is inversely proportional to temperature during mixing with magnetic stirrer. Influence of concentration of surfactants was studied through preparation of samples having a solid phase particles concentration of 0.3%vol, 0.7%vol and 1.0%vol, respectively. The presence of surfactants creates some bonds with nanoparticles, which mainly helps nanofluids long-term stability. On the other hand, the presence of surfactants inside the nanofluids does not influence their thermal conductivity. From DLS measurements, a dependence of cluster size on volume fraction was observed for all nanofluid samples. Experimental data show: viscosity increases by increasing volume concentration; nanofluids with and without surfactants show a non-Newtonian behavior and viscosity of nanofluids increases by increasing cluster size. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据