4.7 Article

Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids

期刊

ENERGY
卷 101, 期 -, 页码 190-201

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2016.01.102

关键词

Microchannel; Longitudinal vortex generators; Nanofluids; Fluid flow; Heat transfer; Entropy generation

向作者/读者索取更多资源

Conjugated heat transfer and hydraulic performance for nanofluid flow in a rectangular microchannel heat sink with LVGs (longitudinal vortex generators) are numerically investigated using at different ranges of Reynolds numbers. Three-dimensional simulations are performed on a microchannel heated by a constant heat flux with a hydraulic diameter of 160 mu m and six pairs of LVGs using a single-phase model. Coolants are selected to be nanofluids containing low volume-fractions (0.5%-3.0%) of Al2O3 or CuO nanoparticles with different particle sizes dispersed in pure water. The employed model is validated and compared by published experimental, and single-phase and two-phase numerical data for various geometries and nanoparticle sizes. The results demonstrate that heat transfer is enhanced by 2.29-30.63% and 9.44%-53.06% for water-Al2O3 and water-CuO nanofluids, respectively, in expense of increasing the pressure drop with respect to pure-water by 3.49%-16.85% and 6.5%-17.70%, respectively. We have also observed that the overall efficiency is improved by 2.55%-29.05% and 9.78%-50.64% for water-Al2O3 and water-CuO nanofluids, respectively. The results are also analyzed in terms of entropy generation, leading to the important conclusion that using nanofluids as the working fluid could reduce the irreversibility level in the rectangular microchannel heat sinks with LVGs. No exterma (minimums) is found for total entropy generation for the ranges of parameters studied. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据