4.4 Article

Cross-Sectional Area Dependence of Tunnel Magnetoresistance, Thermal Stability, and Critical Current Density in MTJ

期刊

IEEE TRANSACTIONS ON MAGNETICS
卷 57, 期 2, 页码 -

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMAG.2020.3039682

关键词

Critical current density; magnetic tunnel junction (MTJ); non-equilibrium Green's function (NEGF); quantization; thermal stability; tunnel magnetoresistance (TMR)

资金

  1. IIT Mandi [IITM/SG/SS/62]

向作者/读者索取更多资源

The study focused on the key metrics of a magnetic tunnel junction, including tunnel magnetoresistance (TMR), thermal stability, and critical switching current. Quantum transport and magnetization dynamics simulations were conducted to understand the effects of down-scaling the transverse dimensions of the MTJ. The study revealed important insights into the performance of MTJs as their dimensions decrease.
Tunnel magnetoresistance (TMR), thermal stability, and critical switching current are important metrics of a magnetic tunnel junction (MTJ). In this work, a detailed study of these metrics is conducted for the down-scaling of the transverse dimensions of the MTJ. The quantum transport and the magnetization dynamics simulations are performed using non-equilibrium Green's function in the mode-space approach and object-oriented micromagnetic framework (OOMMF), respectively. The study of areal size quantization effects on the TMR shows that most of the contribution to the TMR comes from lower energy sub-bands and that the TMR saturates for dimensions above 50 nm. An anomalous behavior is observed in the bias dependence of TMR for the lower energy sub-bands and is explained in terms of the modified Slonczewski's analytical model for conductance around zero bias. The study of TMR scaling is extended to consider non-idealities by introducing elastic dephasing into our simulations. It is shown that with down-scaling of diameters, dephasing affects the zero bias TMR predominantly below 20 nm. Furthermore, TMR is also studied in terms of sensitivity to the variations in the interface layer and the asymmetric reduction of TMR with bias and its reversal at higher bias is observed. OOMMF simulations of the larger stack, including the free layer, are carried out to understand the qualitative link between magnet switching behavior, thermal stability, and critical current density with area scaling. It is shown that the area dependence of thermal stability and critical current follows each other qualitatively and the scaling of both these metrics is correlated with different regimes of magnetization switching, such as macrospin behavior or formation of metastable complex textures. The implications of scaling, on the various MTJ metrics, are discussed in terms of the application domain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据